Initiation-mediated mRNA decay in yeast affects heat-shock mRNAs, and works through decapping and 5'-to-3' hydrolysis.

نویسندگان

  • Heather L Heikkinen
  • Sara A Llewellyn
  • Christine A Barnes
چکیده

The degradation of mRNA in the yeast Saccharomyces cerevisiae takes place through several related pathways. In the most general mRNA-decay pathway, that of poly(A)-dependent decay, the normal shortening of the poly(A) tail on an mRNA molecule by deadenylation triggers mRNA decapping by the enzyme Dcp1p, followed by exonucleolytic digestion by Xrn1p. A specialized mRNA-decay pathway, termed nonsense-mediated decay, comes into play for mRNAs that contain an early nonsense codon. This pathway operates through the Upf proteins in addition to Dcp1p and Xrn1p. Previously, we identified a different specialized mRNA-decay pathway, the initiation-mediated decay pathway, and showed that it affects two Hsp70 heat-shock mRNAs under conditions of slowed translation initiation. Here we report that initiation-mediated mRNA decay also works through the Dcp1 and Xrn1 enzymes, and requires ongoing transcription by RNA polymerase II. We show that several other heat-shock mRNAs, including two from the Hsp90 gene family and three more from the Hsp70 gene family, are also subject to initiation-mediated decay, whereas a variety of non-heat-shock mRNAs are not affected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3' Uridylation and the regulation of RNA function in the cytoplasm.

Degradation of cytoplasmic mRNAs is an important aspect of the regulation of gene function in eukaryotes. Much of what is currently known about the underlying pathways of mRNA decay is derived from studies of the budding yeast Saccharomyces cerevisiae, in which mRNA turnover is initiated by deadenylation, followed either by decapping and 5'-->3' degradation or by further 3'-->5' exonucleolysis....

متن کامل

mRNA stability and control of cell proliferation.

Most of the studies on cell proliferation examine the control of gene expression by specific transcription factors that act on transcriptional initiation. In the last few years, it became evident that mRNA stability/turnover provides an important mechanism for post-transcriptional control of gene expression. In eukaryotes, mRNAs are mainly degraded after deadenylation by decapping and exosome p...

متن کامل

The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes.

A major pathway of mRNA turnover in eukaryotic cells initiates with deadenylation, leading to mRNA decapping and subsequent 5' to 3' exonuclease digestion. We show that a highly conserved member of the DEAD box family of helicases, Dhh1p, stimulates mRNA decapping in yeast. In dhh1delta mutants, mRNAs accumulate as deadenylated, capped species. Dhh1p's effects on decapping only occur on normal ...

متن کامل

Global analysis of mRNA decay intermediates in Saccharomyces cerevisiae.

The general pathways of eukaryotic mRNA decay occur via deadenylation followed by 3' to 5' degradation or decapping, although some endonuclease sites have been identified in metazoan mRNAs. To determine the role of endonucleases in mRNA degradation in Saccharomyces cerevisiae, we mapped 5' monophosphate ends on mRNAs in wild-type and dcp2 xrn1 yeast cells, wherein mRNA endonuclease cleavage pro...

متن کامل

Premature termination codons enhance mRNA decapping in human cells.

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance process that promotes selective degradation of imperfect messages containing premature translation termination codons (PTCs). In yeast, PTCs trigger both deadenylylation-independent mRNA decapping, thereby allowing their rapid degradation by a 5' to 3' exonuclease, and to a smaller extent accelerated deadenylylation. It is not clea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 31 14  شماره 

صفحات  -

تاریخ انتشار 2003